MongoDB
 sql >> Base de Dados >  >> NoSQL >> MongoDB

Inserindo novos campos (colunas) no mongoDB com pandas


O método que você precisa é update_one() com upsert=True em um laço; você não pode usar insert_many() por dois motivos; em primeiro lugar você nem sempre está inserindo; às vezes você está atualizando; em segundo lugar update_many() (e insert_many() ) só funcionam em um único filtro; no seu caso, cada filtro é diferente, pois cada atualização se refere a um horário diferente.

Esta é uma solução genérica que irá combinar dataframes (df_a , df_b neste caso - você pode ter quantos quiser) da maneira que precisar. Ele usa iterrows para obter cada linha do dataframe, filtra a data e define os valores para aqueles no dataframe. o $set O operador substituirá os valores se eles já estiverem lá e os definirá se não estiverem definidos. upsert=True realizará uma inserção se não houver correspondência na data.
for df in [df_a, df_b]:
    for _, row in df.iterrows():
        db.mycollection.update_one({'date': row.get('date')}, {'$set': row.to_dict()}, upsert=True)

Exemplo completo trabalhado:
from pymongo import MongoClient
from pprint import pprint
import datetime
import pandas as pd

# Sample data setup

db = MongoClient()['mydatabase']

data_a = [[datetime.datetime(2017, 5, 19, 21, 20), 96, 8, 98],
          [datetime.datetime(2017, 5, 19, 21, 21), 95, 8, 97],
          [datetime.datetime(2017, 5, 19, 21, 22), 95, 8, 97]]

df_a = pd.DataFrame(data_a, columns=['date', 'std_500_1000window', 'std_50_100window', 'std_50_2000window'])

data_b = [[datetime.datetime(2017, 5, 19, 21, 20), 98, 9, 10],
          [datetime.datetime(2017, 5, 19, 21, 21), 98, 9, 10],
          [datetime.datetime(2017, 5, 19, 21, 22), 98, 9, 10]]

df_b = pd.DataFrame(data_b, columns=['date', 'std_50_3000window', 'std_50_300window', 'std_50_500window'])

# Perform the upserts

for df in [df_a, df_b]:
    for _, row in df.iterrows():
        db.mycollection.update_one({'date': row.get('date')}, {'$set': row.to_dict()}, upsert=True)

# Print the results

for record in db.mycollection.find():
    pprint(record)

Resultado:
{'_id': ObjectId('5f0ae909df5531ac655ce528'),
 'date': datetime.datetime(2017, 5, 19, 21, 20),
 'std_500_1000window': 96,
 'std_50_100window': 8,
 'std_50_2000window': 98,
 'std_50_3000window': 98,
 'std_50_300window': 9,
 'std_50_500window': 10}
{'_id': ObjectId('5f0ae909df5531ac655ce52a'),
 'date': datetime.datetime(2017, 5, 19, 21, 21),
 'std_500_1000window': 95,
 'std_50_100window': 8,
 'std_50_2000window': 97,
 'std_50_3000window': 98,
 'std_50_300window': 9,
 'std_50_500window': 10}
{'_id': ObjectId('5f0ae909df5531ac655ce52c'),
 'date': datetime.datetime(2017, 5, 19, 21, 22),
 'std_500_1000window': 95,
 'std_50_100window': 8,
 'std_50_2000window': 97,
 'std_50_3000window': 98,
 'std_50_300window': 9,
 'std_50_500window': 10}