Database
 sql >> Base de Dados >  >> RDS >> Database

Como calcular a taxa de retenção no SQL?


A taxa de retenção é definida como o número de clientes que continuam a usar um produto/serviço. É difícil calcular a análise de retenção de coorte. Veja como calcular a taxa de retenção no SQL para análise de retenção de clientes. Você pode usá-lo para calcular a taxa de retenção em MySQL, PostgreSQL, SQL Server e Oracle. Também veremos a consulta SQL para retenção de clientes. A taxa de retenção é medida como o número de usuários que retornam, em um intervalo regular, como toda semana ou mês, agrupados por semana de inscrição.

Calcularemos a retenção por coorte semanal no SQL e terminaremos com uma tabela como a abaixo, que mostra o número de clientes que efetuaram login novamente após a primeira inscrição algumas semanas atrás, para cada semana de inscrição.




Como calcular a taxa de retenção no SQL?


Aqui estão as etapas para calcular a taxa de retenção no SQL. Digamos que você tenha a seguinte tabela que armazena user_id e login_date da visita de cada usuário.
mysql> create table login(login_date date,user_id int, id int not null auto_increment, primary key (id));

mysql> insert into login(login_date,user_id)
     values('2020-01-01',10),('2020-01-02',12),('2020-01-03',15),
     ('2020-01-04',11),('2020-01-05',13),('2020-01-06',9),
     ('2020-01-07',21),('2020-01-08',10),('2020-01-09',10),
     ('2020-01-10',2),('2020-01-11',16),('2020-01-12',12),
     ('2020-01-13',10),('2020-01-14',18),('2020-01-15',15),
     ('2020-01-16',12),('2020-01-17',10),('2020-01-18',18),
     ('2020-01-19',14),('2020-01-20',16),('2020-01-21',12),
     ('2020-01-22',21),('2020-01-23',13),('2020-01-24',15),
     ('2020-01-25',20),('2020-01-26',14),('2020-01-27',16),
     ('2020-01-28',15),('2020-01-29',10),('2020-01-30',18);


mysql> select * from login;
+------------+---------+----+
| login_date | user_id | id |
+------------+---------+----+
| 2020-01-01 |      10 |  1 |
| 2020-01-02 |      12 |  2 |
| 2020-01-03 |      15 |  3 |
| 2020-01-04 |      11 |  4 |
| 2020-01-05 |      13 |  5 |
| 2020-01-06 |       9 |  6 |
| 2020-01-07 |      21 |  7 |
| 2020-01-08 |      10 |  8 |
| 2020-01-09 |      10 |  9 |
| 2020-01-10 |       2 | 10 |
| 2020-01-11 |      16 | 11 |
| 2020-01-12 |      12 | 12 |
| 2020-01-13 |      10 | 13 |
| 2020-01-14 |      18 | 14 |
| 2020-01-15 |      15 | 15 |
| 2020-01-16 |      12 | 16 |
| 2020-01-17 |      10 | 17 |
| 2020-01-18 |      18 | 18 |
| 2020-01-19 |      14 | 19 |
| 2020-01-20 |      16 | 20 |
| 2020-01-21 |      12 | 21 |
| 2020-01-22 |      21 | 22 |
| 2020-01-23 |      13 | 23 |
| 2020-01-24 |      15 | 24 |
| 2020-01-25 |      20 | 25 |
| 2020-01-26 |      14 | 26 |
| 2020-01-27 |      16 | 27 |
| 2020-01-28 |      15 | 28 |
| 2020-01-29 |      10 | 29 |
| 2020-01-30 |      18 | 30 |
+------------+---------+----+

Estaremos criando uma análise de coorte semanal. Dependendo do seu produto/serviço, você pode alterá-lo para mensal/diário.

Estaremos usando o MySQL para calcular a taxa de retenção no SQL. Você também pode calcular a taxa de cancelamento do PostgreSQL.


1. Visitas de bucket por semana


Para calcular a taxa de retenção no SQL, primeiro agruparemos cada visita por sua semana de login.
mysql> SELECT
                user_id,
                week(login_date) AS login_week
                FROM login
                GROUP BY user_id,week(login_date);
+---------+------------+
| user_id | login_week |
+---------+------------+
|       2 |          1 |
|       9 |          1 |
|      10 |          0 |
|      10 |          1 |
|      10 |          2 |
|      10 |          4 |
|      11 |          0 |
|      12 |          0 |
|      12 |          2 |
|      12 |          3 |
|      13 |          1 |
|      13 |          3 |
|      14 |          3 |
|      14 |          4 |
|      15 |          0 |
|      15 |          2 |
|      15 |          3 |
|      15 |          4 |
|      16 |          1 |
|      16 |          3 |
|      16 |          4 |
|      18 |          2 |
|      18 |          4 |
|      20 |          3 |
|      21 |          1 |
|      21 |          3 |
+---------+------------+



Confira também como calcular usuários ativos semanais (WAU) no MySQL.


2. Calcule a PRIMEIRA SEMANA de login para cada usuário


Em seguida, para calcular a taxa de retenção no SQL, precisamos calcular a primeira semana de login de cada usuário. Simplesmente usaremos a função MIN e GROUP BY para calcular a primeira semana de login para cada usuário
mysql> SELECT
                user_id,
                min(week(login_date)) AS first_week
                FROM login
                GROUP BY user_id;
+---------+------------+
| user_id | first_week |
+---------+------------+
|       2 |          1 |
|       9 |          1 |
|      10 |          0 |
|      11 |          0 |
|      12 |          0 |
|      13 |          1 |
|      14 |          3 |
|      15 |          0 |
|      16 |          1 |
|      18 |          2 |
|      20 |          3 |
|      21 |          1 |
+---------+------------+




3. Mesclar as 2 tabelas para login_week e first_week


Em seguida, obtemos login_week e first_week lado a lado para cada usuário usando a consulta abaixo, com um INNER JOIN, para calcular a taxa de retenção no SQL.
mysql> select a.user_id,a.login_week,b.first_week as first_week  from   
              (SELECT
                user_id,
                week(login_date) AS login_week
                FROM login
                GROUP BY user_id,week(login_date)) a,
              (SELECT
                user_id,
                min(week(login_date)) AS first_week
                FROM login
                GROUP BY user_id) b
        where a.user_id=b.user_id;
+---------+------------+------------+
| user_id | login_week | first_week |
+---------+------------+------------+
|       2 |          1 |          1 |
|       9 |          1 |          1 |
|      10 |          0 |          0 |
|      10 |          1 |          0 |
|      10 |          2 |          0 |
|      10 |          4 |          0 |
|      11 |          0 |          0 |
|      12 |          0 |          0 |
|      12 |          2 |          0 |
|      12 |          3 |          0 |
|      13 |          1 |          1 |
|      13 |          3 |          1 |
|      14 |          3 |          3 |
|      14 |          4 |          3 |
|      15 |          0 |          0 |
|      15 |          2 |          0 |
|      15 |          3 |          0 |
|      15 |          4 |          0 |
|      16 |          1 |          1 |
|      16 |          3 |          1 |
|      16 |          4 |          1 |
|      18 |          2 |          2 |
|      18 |          4 |          2 |
|      20 |          3 |          3 |
|      21 |          1 |          1 |
|      21 |          3 |          1 |
+---------+------------+------------+


4. Calcular o número da semana


A partir daqui, é fácil calcular a taxa de retenção no SQL. Em seguida, calculamos a diferença entre login_week e first_week para calcular o week_number (número de semanas)
mysql> select a.user_id,a.login_week,b.first_week as first_week,
              a.login_week-first_week as week_number from   
             (SELECT
                user_id,
                week(login_date) AS login_week
                FROM login
                GROUP BY user_id,week(login_date)) a,
             (SELECT
                user_id,
                min(week(login_date)) AS first_week
                FROM login
                GROUP BY user_id) b
        where a.user_id=b.user_id;
+---------+------------+------------+-------------+
| user_id | login_week | first_week | week_number |
+---------+------------+------------+-------------+
|       2 |          1 |          1 |           0 |
|       9 |          1 |          1 |           0 |
|      10 |          0 |          0 |           0 |
|      10 |          1 |          0 |           1 |
|      10 |          2 |          0 |           2 |
|      10 |          4 |          0 |           4 |
|      11 |          0 |          0 |           0 |
|      12 |          0 |          0 |           0 |
|      12 |          2 |          0 |           2 |
|      12 |          3 |          0 |           3 |
|      13 |          1 |          1 |           0 |
|      13 |          3 |          1 |           2 |
|      14 |          3 |          3 |           0 |
|      14 |          4 |          3 |           1 |
|      15 |          0 |          0 |           0 |
|      15 |          2 |          0 |           2 |
|      15 |          3 |          0 |           3 |
|      15 |          4 |          0 |           4 |
|      16 |          1 |          1 |           0 |
|      16 |          3 |          1 |           2 |
|      16 |          4 |          1 |           3 |
|      18 |          2 |          2 |           0 |
|      18 |          4 |          2 |           2 |
|      20 |          3 |          3 |           0 |
|      21 |          1 |          1 |           0 |
|      21 |          3 |          1 |           2 |
+---------+------------+------------+-------------+




5. Dinamize o resultado


Por fim, precisamos dinamizar o resultado, calcular a taxa de retenção no SQL e gerar a tabela de coorte. Em nossa tabela dinâmica, teremos uma linha para cada first_week valor e uma coluna para cada week_number contendo o número de usuários que voltaram após 'n' semanas para usar seu produto/serviço. Para isso, usamos a seguinte consulta.
mysql> select first_week,
     SUM(CASE WHEN week_number = 0 THEN 1 ELSE 0 END) AS week_0,
       SUM(CASE WHEN week_number = 1 THEN 1 ELSE 0 END) AS week_1,
       SUM(CASE WHEN week_number = 2 THEN 1 ELSE 0 END) AS week_2,
       SUM(CASE WHEN week_number = 3 THEN 1 ELSE 0 END) AS week_3,
       SUM(CASE WHEN week_number = 4 THEN 1 ELSE 0 END) AS week_4,
       SUM(CASE WHEN week_number = 5 THEN 1 ELSE 0 END) AS week_5,
       SUM(CASE WHEN week_number = 6 THEN 1 ELSE 0 END) AS week_6,
       SUM(CASE WHEN week_number = 7 THEN 1 ELSE 0 END) AS week_7,
       SUM(CASE WHEN week_number = 8 THEN 1 ELSE 0 END) AS week_8,
       SUM(CASE WHEN week_number = 9 THEN 1 ELSE 0 END) AS week_9
    
       from  (
    
       select a.user_id,a.login_week,b.first_week as first_week,a.login_week-first_week as week_number  from   (SELECT
                user_id,
                week(login_date) AS login_week
                FROM login
                GROUP BY user_id,week(login_date)) a,(SELECT
                user_id,
                min(week(login_date)) AS first_week
                FROM login
                GROUP BY user_id) b
        where a.user_id=b.user_id
    
        ) as with_week_number
    
         group by first_week
     order by first_week;
+------------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+
| first_week | week_0 | week_1 | week_2 | week_3 | week_4 | week_5 | week_6 | week_7 | week_8 | week_9 |
+------------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+
|          0 |      4 |      1 |      3 |      2 |      2 |      0 |      0 |      0 |      0 |      0 |
|          1 |      5 |      0 |      3 |      1 |      0 |      0 |      0 |      0 |      0 |      0 |
|          2 |      1 |      0 |      1 |      0 |      0 |      0 |      0 |      0 |      0 |      0 |
|          3 |      2 |      1 |      0 |      0 |      0 |      0 |      0 |      0 |      0 |      0 |
+------------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+


Agora sabemos como calcular a taxa de retenção no SQL. Você também pode fazer as consultas acima para calcular a taxa de retenção no MySQL, PostgreSQL.

Por fim, você pode usar uma ferramenta de visualização de dados para plotar a análise de coorte de retenção acima em uma tabela. Aqui está uma tabela de retenção de coorte criada usando o Ubiq.



A propósito, se você deseja criar tabelas dinâmicas, gráficos e painéis do banco de dados MySQL, experimente o Ubiq. Oferecemos um teste gratuito de 14 dias.