PostgreSQL
 sql >> Base de Dados >  >> RDS >> PostgreSQL

Otimização de pesquisa de texto completo do Django - Postgres


Como já sugerido por @knbk para melhoria de desempenho, você deve ler o Desempenho da pesquisa de texto completo seção no Django documentação.

Em seu código, você pode adicionar um campo de vetor de pesquisa em seu modelo com um índice GIN relacionado e um conjunto de consultas com um novo método para atualizar o campo:
from django.contrib.postgres.indexes import GinIndex
from django.contrib.postgres.search import SearchVector, SearchVectorField
from django.db import models
from postgres_copy import CopyQuerySet


class AddressesQuerySet(CopyQuerySet):

    def update_search_vector(self):
        return self.update(search_vector=SearchVector(
            'number', 'street', 'unit', 'city', 'region', 'postcode'
        ))


class Addresses(models.Model):
    date_update = models.DateTimeField(auto_now=True, null=True)
    longitude = models.DecimalField(max_digits=9, decimal_places=6, null=True)
    latitude = models.DecimalField(max_digits=9, decimal_places=6, null=True)
    number = models.CharField(max_length=16, null=True, default='')
    street = models.CharField(max_length=60, null=True, default='')
    unit = models.CharField(max_length=50, null=True, default='')
    city = models.CharField(max_length=50, null=True, default='')
    district = models.CharField(max_length=10, null=True, default='')
    region = models.CharField(max_length=5, null=True, default='')
    postcode = models.CharField(max_length=5, null=True, default='')
    addr_id = models.CharField(max_length=20, unique=True)
    addr_hash = models.CharField(max_length=20, unique=True)
    search_vector = SearchVectorField(null=True, editable=False)

    objects = AddressesQuerySet.as_manager()

    class Meta:
        indexes = [
            GinIndex(fields=['search_vector'], name='search_vector_idx')
        ]

Você pode atualizar seu novo campo de vetor de pesquisa usando o novo método queryset:
>>> Addresses.objects.update_search_vector()
UPDATE "addresses_addresses"
SET "search_vector" = to_tsvector(
  COALESCE("addresses_addresses"."number", '') || ' ' ||
  COALESCE("addresses_addresses"."street", '') || ' ' ||
  COALESCE("addresses_addresses"."unit", '') || ' ' ||
  COALESCE("addresses_addresses"."city", '') || ' ' ||
  COALESCE("addresses_addresses"."region", '') || ' ' ||
  COALESCE("addresses_addresses"."postcode", '')
)

Se você executar uma consulta e ler a explicação, poderá ver seu índice GIN usado:
>>> print(Addresses.objects.filter(search_vector='north').values('id').explain(verbose=True))
EXPLAIN (VERBOSE true)
SELECT "addresses_addresses"."id"
FROM "addresses_addresses"
WHERE "addresses_addresses"."search_vector" @@ (plainto_tsquery('north')) = true [0.80ms]
Bitmap Heap Scan on public.addresses_addresses  (cost=12.25..16.52 rows=1 width=4)
  Output: id
  Recheck Cond: (addresses_addresses.search_vector @@ plainto_tsquery('north'::text))
  ->  Bitmap Index Scan on search_vector_idx  (cost=0.00..12.25 rows=1 width=0)
        Index Cond: (addresses_addresses.search_vector @@ plainto_tsquery('north'::text))

Se você quiser se aprofundar ainda mais, leia um artigo que escrevi sobre o assunto:

"Full-Text Pesquise no Django com PostgreSQL "

Atualizar


Tentei executar o SQL gerado pelo Django ORM:http://sqlfiddle.com/#!17 /f9aa9/1