MongoDB
 sql >> Base de Dados >  >> NoSQL >> MongoDB

Compare 2 datas no método de localização do mongo


Para MongoDB 3.6 e mais recente:

O $expr operador permite o uso de expressões de agregação dentro da linguagem de consulta, assim você pode aproveitar o uso de $dateToString operador para transformar o campo de data:
db.test.find({ 
    "$expr": { 
        "$ne": [ 
             { "$dateToString": { "format": "%Y-%m-%d", "date": "$created" } }, 
             { "$dateToString": { "format": "%Y-%m-%d", "date": "$last_active" } }
        ] 
    } 
})

ou usando a estrutura de agregação com $ corresponder encanamento
db.test.aggregate([
    { "$match": { 
        "$expr": { 
            "$ne": [ 
                { "$dateToString": { "format": "%Y-%m-%d", "date": "$created" } }, 
                { "$dateToString": { "format": "%Y-%m-%d", "date": "$last_active" } }
            ] 
        } 
    } }
])

Para MongoDB 3.0+:

Você também pode usar a estrutura de agregação com o $redact operador de pipeline que permite processar a condição lógica com o $cond operador e usa as operações especiais $$ MANTER para "manter" o documento onde a condição lógica é verdadeira ou $$PRUNE para "remover" o documento onde a condição era falsa.

Considere executar a seguinte operação agregada que demonstra o conceito acima:
db.test.aggregate([
    {
        "$redact": {
            "$cond": [
                { 
                    "$ne": [ 
                        { "$dateToString": { "format": "%Y-%m-%d", "date": "$created" } }, 
                        { "$dateToString": { "format": "%Y-%m-%d", "date": "$last_active" } }
                    ] 
                },
                "$$KEEP",
                "$$PRUNE"
            ]
        }
    }
])

Esta operação é semelhante a ter um $projeto pipeline que seleciona os campos na coleção e cria um novo campo que contém o resultado da consulta de condição lógica e, em seguida, um $match , exceto que $redact usa um único estágio de pipeline que é mais eficiente:
db.test.aggregate([
    {
        "$project": { 
            "created": 1, 
            "last_active": 1,
            "sameDay": { 
                "$cond": [ 
                    { 
                        "$eq": [ 
                            {"$substr" : ["$last_active",0, 10]}, 
                            {"$substr" : ["$created",0, 10]}
                        ] 
                    }, true, false 
                ]
            } 
        } 
    },
    { "$match": { "sameDay": false } }
])

0r
db.test.aggregate([
    {
        "$project": { 
            "created": 1, 
            "last_active": 1,
            "sameDay": { 
                "$cond": [ 
                    { 
                        "$eq": [ 
                            { "$dateToString": { "format": "%Y-%m-%d", "date": "$created" } }, 
                            { "$dateToString": { "format": "%Y-%m-%d", "date": "$last_active" } }
                        ] 
                    }, true, false 
                ]
            } 
        } 
    },
    { "$match": { "sameDay": false } }
])

Outra abordagem seria usar o $where operador em seu find() mas observe que a consulta será bastante lenta, pois usar $onde sozinho requer uma varredura de tabela e o banco de dados executa a expressão ou função JavaScript para cada documento na coleção, então combine com consultas indexadas se puder, pois o desempenho da consulta também melhora quando você a expressa usando os operadores padrão do MongoDB (por exemplo, $gt , $in ):
db.test.find({ 
   "$where": function() { 
       return this.created.getDate() !== this.last_active.getDate() 
   } 
});

ou mais compacto:
db.test.find({ "$where": "this.created.getDate() !== this.last_active.getDate()" });

Com a entrada:
/* 0 */
{
    "_id" : 1,
    "created" : ISODate("2014-12-19T06:01:17.171Z"),
    "last_active" : ISODate("2014-12-21T15:38:13.842Z")
}

/* 1 */
{
    "_id" : 2,
    "created" : ISODate("2015-07-06T12:17:32.084Z"),
    "last_active" : ISODate("2015-07-06T18:07:08.145Z")
}

/* 2 */
{
    "_id" : 3,
    "created" : ISODate("2015-07-06T06:01:17.171Z"),
    "last_active" : ISODate("2015-07-07T10:04:30.921Z")
}

/* 3 */
{
    "_id" : 4,
    "created" : ISODate("2015-07-06T06:01:17.171Z"),
    "last_active" : ISODate("2015-07-06T09:47:44.186Z")
}

/* 4 */
{
    "_id" : 5,
    "created" : ISODate("2013-12-19T06:01:17.171Z"),
    "last_active" : ISODate("2014-01-20T13:21:37.427Z")
}

A agregação retorna:
/* 0 */
{
    "result" : [ 
        {
            "_id" : 1,
            "created" : ISODate("2014-12-19T06:01:17.171Z"),
            "last_active" : ISODate("2014-12-21T15:38:13.842Z"),
            "sameDay" : false
        }, 
        {
            "_id" : 3,
            "created" : ISODate("2015-07-06T06:01:17.171Z"),
            "last_active" : ISODate("2015-07-07T10:04:30.921Z"),
            "sameDay" : false
        }, 
        {
            "_id" : 5,
            "created" : ISODate("2013-12-19T06:01:17.171Z"),
            "last_active" : ISODate("2014-01-20T13:21:37.427Z"),
            "sameDay" : false
        }
    ],
    "ok" : 1
}