PostgreSQL
 sql >> Base de Dados >  >> RDS >> PostgreSQL

Como obtenho dados locais em um banco de dados somente leitura usando o dplyr?


Uma opção é usar algo como a seguinte função, que transforma um quadro de dados local em um quadro de dados remoto usando SQL mesmo ao usar uma conexão somente leitura .
df_to_pg <- function(df, conn) {

    collapse <- function(x) paste0("(", paste(x, collapse = ", "), ")")

    names <- paste(DBI::dbQuoteIdentifier(conn, names(df)), collapse = ", ")

    values <-
        df %>%
        lapply(DBI::dbQuoteLiteral, conn = conn) %>%
        purrr::transpose() %>%
        lapply(collapse) %>%
        paste(collapse = ",\n")

    the_sql <- paste("SELECT * FROM (VALUES", values, ") AS t (", names, ")")

    temp_df_sql <- dplyr::tbl(conn, dplyr::sql(the_sql))
    
    return(temp_df_sql)
}

Aqui está uma ilustração da função em uso. A função foi testada no PostgreSQL e SQL Server, mas não funcionará no SQLite (devido à falta de VALUES palavra-chave que funciona desta forma).Acredito que deve funcionar no MySQL ou Oracle, pois estes possuem os VALUES palavra-chave.
library(dplyr, warn.conflicts = FALSE)
library(DBI)
   
pg <- dbConnect(RPostgres::Postgres())     

events <- tibble(firm_ids = 10000:10024L,
                 date = seq(from = as.Date("2020-03-14"), 
                            length = length(firm_ids), 
                            by = 1))
events
#> # A tibble: 25 x 2
#>    firm_ids date      
#>       <int> <date>    
#>  1    10000 2020-03-14
#>  2    10001 2020-03-15
#>  3    10002 2020-03-16
#>  4    10003 2020-03-17
#>  5    10004 2020-03-18
#>  6    10005 2020-03-19
#>  7    10006 2020-03-20
#>  8    10007 2020-03-21
#>  9    10008 2020-03-22
#> 10    10009 2020-03-23
#> # … with 15 more rows

events_pg <- df_to_pg(events, pg)
events_pg
#> # Source:   SQL [?? x 2]
#> # Database: postgres [[email protected]/tmp:5432/crsp]
#>    firm_ids date      
#>       <int> <date>    
#>  1    10000 2020-03-14
#>  2    10001 2020-03-15
#>  3    10002 2020-03-16
#>  4    10003 2020-03-17
#>  5    10004 2020-03-18
#>  6    10005 2020-03-19
#>  7    10006 2020-03-20
#>  8    10007 2020-03-21
#>  9    10008 2020-03-22
#> 10    10009 2020-03-23
#> # … with more rows