No MongoDB, o
cursor.sort()
especifica a ordem na qual a consulta retorna os documentos correspondentes. O
sort()
O método aceita um documento que especifica o campo a ser classificado e a ordem de classificação. A ordem de classificação pode ser 1
para ascendente ou -1
para descer. Você também pode especificar
{ $meta: "textScore" }
ao fazer $text
pesquisas, para classificar pelo textScore
calculado metadados em ordem decrescente. Dados de amostra
Suponha que tenhamos uma coleção chamada
pets
com os seguintes documentos:{ "_id" : 1, "name" : "Wag", "type" : "Dog", "weight" : 20 } { "_id" : 2, "name" : "Bark", "type" : "Dog", "weight" : 10 } { "_id" : 3, "name" : "Meow", "type" : "Cat", "weight" : 7 } { "_id" : 4, "name" : "Scratch", "type" : "Cat", "weight" : 8 } { "_id" : 5, "name" : "Bruce", "type" : "Kangaroo", "weight" : 100 } { "_id" : 6, "name" : "Hop", "type" : "Kangaroo", "weight" : 130 } { "_id" : 7, "name" : "Punch", "type" : "Kangaroo", "weight" : 200 } { "_id" : 8, "name" : "Snap", "type" : "Cat", "weight" : 12 } { "_id" : 9, "name" : "Ruff", "type" : "Dog", "weight" : 30 }
Classificar em ordem crescente
Para classificar em ordem crescente, usamos
1
para a ordem de classificação. Abaixo está um exemplo de uma consulta que usa o
$sort
operador para classificar essa coleção pelo weight
campo em ordem crescente. db.pets.find().sort({ weight: 1 })
Resultado:
{ "_id" : 3, "name" : "Meow", "type" : "Cat", "weight" : 7 } { "_id" : 4, "name" : "Scratch", "type" : "Cat", "weight" : 8 } { "_id" : 2, "name" : "Bark", "type" : "Dog", "weight" : 10 } { "_id" : 8, "name" : "Snap", "type" : "Cat", "weight" : 12 } { "_id" : 1, "name" : "Wag", "type" : "Dog", "weight" : 20 } { "_id" : 9, "name" : "Ruff", "type" : "Dog", "weight" : 30 } { "_id" : 5, "name" : "Bruce", "type" : "Kangaroo", "weight" : 100 } { "_id" : 6, "name" : "Hop", "type" : "Kangaroo", "weight" : 130 } { "_id" : 7, "name" : "Punch", "type" : "Kangaroo", "weight" : 200 }
Classificar em ordem decrescente
Para classificar em ordem decrescente, usamos
-1
para a ordem de classificação. db.pets.find().sort({ weight: -1 })
Resultado:
{ "_id" : 7, "name" : "Punch", "type" : "Kangaroo", "weight" : 200 } { "_id" : 6, "name" : "Hop", "type" : "Kangaroo", "weight" : 130 } { "_id" : 5, "name" : "Bruce", "type" : "Kangaroo", "weight" : 100 } { "_id" : 9, "name" : "Ruff", "type" : "Dog", "weight" : 30 } { "_id" : 1, "name" : "Wag", "type" : "Dog", "weight" : 20 } { "_id" : 8, "name" : "Snap", "type" : "Cat", "weight" : 12 } { "_id" : 2, "name" : "Bark", "type" : "Dog", "weight" : 10 } { "_id" : 4, "name" : "Scratch", "type" : "Cat", "weight" : 8 } { "_id" : 3, "name" : "Meow", "type" : "Cat", "weight" : 7 }
Classificar por vários campos
Para classificar por mais de um campo, separe cada combinação de campo/ordem de classificação com uma vírgula.
Exemplo
db.pets.find().sort({ type: 1, weight: -1, _id: 1 })
Resultado:
{ "_id" : 8, "name" : "Snap", "type" : "Cat", "weight" : 12 } { "_id" : 4, "name" : "Scratch", "type" : "Cat", "weight" : 8 } { "_id" : 3, "name" : "Meow", "type" : "Cat", "weight" : 7 } { "_id" : 9, "name" : "Ruff", "type" : "Dog", "weight" : 30 } { "_id" : 1, "name" : "Wag", "type" : "Dog", "weight" : 20 } { "_id" : 2, "name" : "Bark", "type" : "Dog", "weight" : 10 } { "_id" : 7, "name" : "Punch", "type" : "Kangaroo", "weight" : 200 } { "_id" : 6, "name" : "Hop", "type" : "Kangaroo", "weight" : 130 } { "_id" : 5, "name" : "Bruce", "type" : "Kangaroo", "weight" : 100 }
Neste exemplo, classificamos pelo
type
primeiro em ordem crescente, depois pelo weight
campo em ordem decrescente, depois pelo _id
campo em ordem crescente. Isso significa que, se houver vários animais de estimação do mesmo tipo, esses animais de estimação serão classificados por seu
weight
por ordem decrescente. Se houver vários animais de estimação com o mesmo tipo e peso, esses animais serão classificados pelo _id
campo em ordem crescente. Se não tivéssemos incluído o _id
campo no processo de classificação, os animais de estimação do mesmo tipo e peso podem aparecer em qualquer ordem. Isso é verdade toda vez que executamos a consulta. Sem ter um campo de classificação em um campo exclusivo (como o _id
campo), seria inteiramente possível (até mesmo provável) que os resultados voltassem em uma ordem diferente cada vez que a consulta fosse executada. Classificando tipos diferentes
Ao comparar valores de diferentes tipos de BSON, o MongoDB usa a seguinte ordem de comparação, do menor para o maior:
- MinKey (tipo interno)
- Nulo
- Números (ints, longs, doubles, decimals)
- Símbolo, string
- Objeto
- Matriz
- BinData
- ObjectID
- Booleano
- Data
- Carimbo de data e hora
- Expressão regular
- MaxKey (tipo interno)
Suponha que tenhamos uma coleção chamada posts com os seguintes documentos:
{ "_id" : 1, "title" : "Web", "body" : "Create a funny website with these three easy steps...", "date" : "2021-01-01T00:00:00.000Z" } { "_id" : 2, "title" : "Animals", "body" : "Animals are funny things...", "date" : ISODate("2020-01-01T00:00:00Z") } { "_id" : 3, "title" : "Oceans", "body" : "Oceans are wide and vast, but definitely not funny...", "date" : ISODate("2021-01-01T00:00:00Z") }
Observe que a primeira
date
contém uma string de data, enquanto os outros dois documentos usam um objeto Date. Observe também que a string de data contém exatamente a mesma data do documento 3 e essa data é posterior à data do documento 2.
Vamos classificar pela
date
campos desses documentos:db.posts.find().sort({ date: 1 }).pretty()
Resultado:
{ "_id" : 1, "title" : "Web", "body" : "Create a funny website with these three easy steps...", "date" : "2021-01-01T00:00:00.000Z" } { "_id" : 2, "title" : "Animals", "body" : "Animals are funny things...", "date" : ISODate("2020-01-01T00:00:00Z") } { "_id" : 3, "title" : "Oceans", "body" : "Oceans are wide and vast, but definitely not funny...", "date" : ISODate("2021-01-01T00:00:00Z") }
Nesse caso, classificamos em ordem crescente, o que significa que as datas anteriores devem vir primeiro. No entanto, nosso primeiro documento contém uma string de data em vez de um objeto Date e, portanto, veio primeiro – mesmo que sua data seja posterior à data no documento 2.
Aqui está novamente, mas em ordem decrescente:
db.posts.find().sort({ date: -1 }).pretty()
Resultado:
{ "_id" : 3, "title" : "Oceans", "body" : "Oceans are wide and vast, but definitely not funny...", "date" : ISODate("2021-01-01T00:00:00Z") } { "_id" : 2, "title" : "Animals", "body" : "Animals are funny things...", "date" : ISODate("2020-01-01T00:00:00Z") } { "_id" : 1, "title" : "Web", "body" : "Create a funny website with these three easy steps...", "date" : "2021-01-01T00:00:00.000Z" }
Mais uma vez, os diferentes tipos de dados são ordenados separadamente dentro de si.
Classificação de metadados de pontuação de texto
Você pode usar o
{ $meta: "textScore" }
argumento para classificar por pontuação de relevância decrescente ao usar $text
pesquisas. Exemplo
db.posts.find(
{ $text: { $search: "funny" } },
{ score: { $meta: "textScore" }}
).sort({ score: { $meta: "textScore" } }
).pretty()
Resultado:
{ "_id" : 2, "title" : "Animals", "body" : "Animals are funny things...", "date" : ISODate("2020-01-01T00:00:00Z"), "score" : 0.6666666666666666 } { "_id" : 3, "title" : "Oceans", "body" : "Oceans are wide and vast, but definitely not funny...", "date" : ISODate("2021-01-01T00:00:00Z"), "score" : 0.6 } { "_id" : 1, "title" : "Web", "body" : "Create a funny website with these three easy steps...", "date" : "2021-01-01T00:00:00.000Z", "score" : 0.5833333333333334 }
Neste exemplo, classificamos por
{ $meta: "textScore" }
. Do MongoDB 4.4 a linha que vai
{ score: { $meta: "textScore" }}
é opcional. Omitir isso omitirá a score
campo dos resultados. Portanto, podemos fazer o seguinte (do MongoDB 4.4):db.posts.find(
{ $text: { $search: "funny" } }
).sort({ score: { $meta: "textScore" } }
).pretty()
Resultado:
{ "_id" : 2, "title" : "Animals", "body" : "Animals are funny things...", "date" : ISODate("2020-01-01T00:00:00Z") } { "_id" : 3, "title" : "Oceans", "body" : "Oceans are wide and vast, but definitely not funny...", "date" : ISODate("2021-01-01T00:00:00Z") } { "_id" : 1, "title" : "Web", "body" : "Create a funny website with these three easy steps...", "date" : "2021-01-01T00:00:00.000Z" }
Fazendo
$text
pesquisas como essa exigem que tenhamos criado um índice de texto. Caso contrário, um IndexNotFound
erro será retornado. Mais informações
Consulte a documentação do MongoDB para obter mais informações.